3.5.69 \(\int \frac {1}{(a+a \sin (e+f x))^2 (c+d \sin (e+f x))^3} \, dx\) [469]

Optimal. Leaf size=294 \[ \frac {d^2 \left (12 c^2+16 c d+7 d^2\right ) \tan ^{-1}\left (\frac {d+c \tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c^2-d^2}}\right )}{a^2 (c-d)^4 (c+d)^2 \sqrt {c^2-d^2} f}-\frac {d \left (2 c^2-16 c d-21 d^2\right ) \cos (e+f x)}{6 a^2 (c-d)^3 (c+d) f (c+d \sin (e+f x))^2}-\frac {(c-8 d) \cos (e+f x)}{3 a^2 (c-d)^2 f (1+\sin (e+f x)) (c+d \sin (e+f x))^2}-\frac {\cos (e+f x)}{3 (c-d) f (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^2}-\frac {d \left (2 c^3-16 c^2 d-59 c d^2-32 d^3\right ) \cos (e+f x)}{6 a^2 (c-d)^4 (c+d)^2 f (c+d \sin (e+f x))} \]

[Out]

-1/6*d*(2*c^2-16*c*d-21*d^2)*cos(f*x+e)/a^2/(c-d)^3/(c+d)/f/(c+d*sin(f*x+e))^2-1/3*(c-8*d)*cos(f*x+e)/a^2/(c-d
)^2/f/(1+sin(f*x+e))/(c+d*sin(f*x+e))^2-1/3*cos(f*x+e)/(c-d)/f/(a+a*sin(f*x+e))^2/(c+d*sin(f*x+e))^2-1/6*d*(2*
c^3-16*c^2*d-59*c*d^2-32*d^3)*cos(f*x+e)/a^2/(c-d)^4/(c+d)^2/f/(c+d*sin(f*x+e))+d^2*(12*c^2+16*c*d+7*d^2)*arct
an((d+c*tan(1/2*f*x+1/2*e))/(c^2-d^2)^(1/2))/a^2/(c-d)^4/(c+d)^2/f/(c^2-d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.42, antiderivative size = 294, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {2845, 3057, 2833, 12, 2739, 632, 210} \begin {gather*} \frac {d^2 \left (12 c^2+16 c d+7 d^2\right ) \text {ArcTan}\left (\frac {c \tan \left (\frac {1}{2} (e+f x)\right )+d}{\sqrt {c^2-d^2}}\right )}{a^2 f (c-d)^4 (c+d)^2 \sqrt {c^2-d^2}}-\frac {d \left (2 c^2-16 c d-21 d^2\right ) \cos (e+f x)}{6 a^2 f (c-d)^3 (c+d) (c+d \sin (e+f x))^2}-\frac {d \left (2 c^3-16 c^2 d-59 c d^2-32 d^3\right ) \cos (e+f x)}{6 a^2 f (c-d)^4 (c+d)^2 (c+d \sin (e+f x))}-\frac {(c-8 d) \cos (e+f x)}{3 a^2 f (c-d)^2 (\sin (e+f x)+1) (c+d \sin (e+f x))^2}-\frac {\cos (e+f x)}{3 f (c-d) (a \sin (e+f x)+a)^2 (c+d \sin (e+f x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Sin[e + f*x])^2*(c + d*Sin[e + f*x])^3),x]

[Out]

(d^2*(12*c^2 + 16*c*d + 7*d^2)*ArcTan[(d + c*Tan[(e + f*x)/2])/Sqrt[c^2 - d^2]])/(a^2*(c - d)^4*(c + d)^2*Sqrt
[c^2 - d^2]*f) - (d*(2*c^2 - 16*c*d - 21*d^2)*Cos[e + f*x])/(6*a^2*(c - d)^3*(c + d)*f*(c + d*Sin[e + f*x])^2)
 - ((c - 8*d)*Cos[e + f*x])/(3*a^2*(c - d)^2*f*(1 + Sin[e + f*x])*(c + d*Sin[e + f*x])^2) - Cos[e + f*x]/(3*(c
 - d)*f*(a + a*Sin[e + f*x])^2*(c + d*Sin[e + f*x])^2) - (d*(2*c^3 - 16*c^2*d - 59*c*d^2 - 32*d^3)*Cos[e + f*x
])/(6*a^2*(c - d)^4*(c + d)^2*f*(c + d*Sin[e + f*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[2*(e/d), Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 2833

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(a^2 - b
^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 2845

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rubi steps

\begin {align*} \int \frac {1}{(a+a \sin (e+f x))^2 (c+d \sin (e+f x))^3} \, dx &=-\frac {\cos (e+f x)}{3 (c-d) f (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^2}-\frac {\int \frac {-a (c-5 d)-3 a d \sin (e+f x)}{(a+a \sin (e+f x)) (c+d \sin (e+f x))^3} \, dx}{3 a^2 (c-d)}\\ &=-\frac {(c-8 d) \cos (e+f x)}{3 a^2 (c-d)^2 f (1+\sin (e+f x)) (c+d \sin (e+f x))^2}-\frac {\cos (e+f x)}{3 (c-d) f (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^2}+\frac {\int \frac {21 a^2 d^2+2 a^2 (c-8 d) d \sin (e+f x)}{(c+d \sin (e+f x))^3} \, dx}{3 a^4 (c-d)^2}\\ &=-\frac {d \left (2 c^2-16 c d-21 d^2\right ) \cos (e+f x)}{6 a^2 (c-d)^3 (c+d) f (c+d \sin (e+f x))^2}-\frac {(c-8 d) \cos (e+f x)}{3 a^2 (c-d)^2 f (1+\sin (e+f x)) (c+d \sin (e+f x))^2}-\frac {\cos (e+f x)}{3 (c-d) f (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^2}-\frac {\int \frac {-2 a^2 d^2 (19 c+16 d)-a^2 d \left (2 c (c-8 d)-21 d^2\right ) \sin (e+f x)}{(c+d \sin (e+f x))^2} \, dx}{6 a^4 (c-d)^3 (c+d)}\\ &=-\frac {d \left (2 c^2-16 c d-21 d^2\right ) \cos (e+f x)}{6 a^2 (c-d)^3 (c+d) f (c+d \sin (e+f x))^2}-\frac {(c-8 d) \cos (e+f x)}{3 a^2 (c-d)^2 f (1+\sin (e+f x)) (c+d \sin (e+f x))^2}-\frac {\cos (e+f x)}{3 (c-d) f (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^2}-\frac {d \left (2 c^3-16 c^2 d-59 c d^2-32 d^3\right ) \cos (e+f x)}{6 a^2 (c-d)^4 (c+d)^2 f (c+d \sin (e+f x))}+\frac {\int \frac {3 a^2 d^2 \left (12 c^2+16 c d+7 d^2\right )}{c+d \sin (e+f x)} \, dx}{6 a^4 (c-d)^4 (c+d)^2}\\ &=-\frac {d \left (2 c^2-16 c d-21 d^2\right ) \cos (e+f x)}{6 a^2 (c-d)^3 (c+d) f (c+d \sin (e+f x))^2}-\frac {(c-8 d) \cos (e+f x)}{3 a^2 (c-d)^2 f (1+\sin (e+f x)) (c+d \sin (e+f x))^2}-\frac {\cos (e+f x)}{3 (c-d) f (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^2}-\frac {d \left (2 c^3-16 c^2 d-59 c d^2-32 d^3\right ) \cos (e+f x)}{6 a^2 (c-d)^4 (c+d)^2 f (c+d \sin (e+f x))}+\frac {\left (d^2 \left (12 c^2+16 c d+7 d^2\right )\right ) \int \frac {1}{c+d \sin (e+f x)} \, dx}{2 a^2 (c-d)^4 (c+d)^2}\\ &=-\frac {d \left (2 c^2-16 c d-21 d^2\right ) \cos (e+f x)}{6 a^2 (c-d)^3 (c+d) f (c+d \sin (e+f x))^2}-\frac {(c-8 d) \cos (e+f x)}{3 a^2 (c-d)^2 f (1+\sin (e+f x)) (c+d \sin (e+f x))^2}-\frac {\cos (e+f x)}{3 (c-d) f (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^2}-\frac {d \left (2 c^3-16 c^2 d-59 c d^2-32 d^3\right ) \cos (e+f x)}{6 a^2 (c-d)^4 (c+d)^2 f (c+d \sin (e+f x))}+\frac {\left (d^2 \left (12 c^2+16 c d+7 d^2\right )\right ) \text {Subst}\left (\int \frac {1}{c+2 d x+c x^2} \, dx,x,\tan \left (\frac {1}{2} (e+f x)\right )\right )}{a^2 (c-d)^4 (c+d)^2 f}\\ &=-\frac {d \left (2 c^2-16 c d-21 d^2\right ) \cos (e+f x)}{6 a^2 (c-d)^3 (c+d) f (c+d \sin (e+f x))^2}-\frac {(c-8 d) \cos (e+f x)}{3 a^2 (c-d)^2 f (1+\sin (e+f x)) (c+d \sin (e+f x))^2}-\frac {\cos (e+f x)}{3 (c-d) f (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^2}-\frac {d \left (2 c^3-16 c^2 d-59 c d^2-32 d^3\right ) \cos (e+f x)}{6 a^2 (c-d)^4 (c+d)^2 f (c+d \sin (e+f x))}-\frac {\left (2 d^2 \left (12 c^2+16 c d+7 d^2\right )\right ) \text {Subst}\left (\int \frac {1}{-4 \left (c^2-d^2\right )-x^2} \, dx,x,2 d+2 c \tan \left (\frac {1}{2} (e+f x)\right )\right )}{a^2 (c-d)^4 (c+d)^2 f}\\ &=\frac {d^2 \left (12 c^2+16 c d+7 d^2\right ) \tan ^{-1}\left (\frac {d+c \tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c^2-d^2}}\right )}{a^2 (c-d)^4 (c+d)^2 \sqrt {c^2-d^2} f}-\frac {d \left (2 c^2-16 c d-21 d^2\right ) \cos (e+f x)}{6 a^2 (c-d)^3 (c+d) f (c+d \sin (e+f x))^2}-\frac {(c-8 d) \cos (e+f x)}{3 a^2 (c-d)^2 f (1+\sin (e+f x)) (c+d \sin (e+f x))^2}-\frac {\cos (e+f x)}{3 (c-d) f (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^2}-\frac {d \left (2 c^3-16 c^2 d-59 c d^2-32 d^3\right ) \cos (e+f x)}{6 a^2 (c-d)^4 (c+d)^2 f (c+d \sin (e+f x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.78, size = 338, normalized size = 1.15 \begin {gather*} \frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (4 (c-d) \sin \left (\frac {1}{2} (e+f x)\right )-2 (c-d) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+4 (c-10 d) \sin \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2+\frac {6 d^2 \left (12 c^2+16 c d+7 d^2\right ) \tan ^{-1}\left (\frac {d+c \tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c^2-d^2}}\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3}{(c+d)^2 \sqrt {c^2-d^2}}+\frac {3 (c-d) d^3 \cos (e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3}{(c+d) (c+d \sin (e+f x))^2}+\frac {3 d^3 (7 c+4 d) \cos (e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3}{(c+d)^2 (c+d \sin (e+f x))}\right )}{6 a^2 (c-d)^4 f (1+\sin (e+f x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Sin[e + f*x])^2*(c + d*Sin[e + f*x])^3),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(4*(c - d)*Sin[(e + f*x)/2] - 2*(c - d)*(Cos[(e + f*x)/2] + Sin[(e + f*
x)/2]) + 4*(c - 10*d)*Sin[(e + f*x)/2]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2 + (6*d^2*(12*c^2 + 16*c*d + 7*d
^2)*ArcTan[(d + c*Tan[(e + f*x)/2])/Sqrt[c^2 - d^2]]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3)/((c + d)^2*Sqrt[
c^2 - d^2]) + (3*(c - d)*d^3*Cos[e + f*x]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3)/((c + d)*(c + d*Sin[e + f*x
])^2) + (3*d^3*(7*c + 4*d)*Cos[e + f*x]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3)/((c + d)^2*(c + d*Sin[e + f*x
]))))/(6*a^2*(c - d)^4*f*(1 + Sin[e + f*x])^2)

________________________________________________________________________________________

Maple [A]
time = 0.86, size = 378, normalized size = 1.29 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(f*x+e))^2/(c+d*sin(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

2/f/a^2*(-(c-4*d)/(c-d)^4/(tan(1/2*f*x+1/2*e)+1)-2/3/(c-d)^3/(tan(1/2*f*x+1/2*e)+1)^3+1/(c-d)^3/(tan(1/2*f*x+1
/2*e)+1)^2+d^2/(c-d)^4*((1/2*d^2*(9*c^2+4*c*d-2*d^2)/c/(c^2+2*c*d+d^2)*tan(1/2*f*x+1/2*e)^3+1/2*d*(8*c^4+4*c^3
*d+15*c^2*d^2+8*c*d^3-2*d^4)/c^2/(c^2+2*c*d+d^2)*tan(1/2*f*x+1/2*e)^2+1/2*d^2*(23*c^2+12*c*d-2*d^2)/(c^2+2*c*d
+d^2)/c*tan(1/2*f*x+1/2*e)+1/2*d*(8*c^2+4*c*d-d^2)/(c^2+2*c*d+d^2))/(c*tan(1/2*f*x+1/2*e)^2+2*d*tan(1/2*f*x+1/
2*e)+c)^2+1/2*(12*c^2+16*c*d+7*d^2)/(c^2+2*c*d+d^2)/(c^2-d^2)^(1/2)*arctan(1/2*(2*c*tan(1/2*f*x+1/2*e)+2*d)/(c
^2-d^2)^(1/2))))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c+d*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*d^2-4*c^2>0)', see `assume?`
 for more de

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 1754 vs. \(2 (292) = 584\).
time = 0.50, size = 3597, normalized size = 12.23 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c+d*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

[-1/12*(4*c^7 - 4*c^6*d - 12*c^5*d^2 + 12*c^4*d^3 + 12*c^3*d^4 - 12*c^2*d^5 - 4*c*d^6 + 4*d^7 - 2*(2*c^5*d^2 -
 16*c^4*d^3 - 61*c^3*d^4 - 16*c^2*d^5 + 59*c*d^6 + 32*d^7)*cos(f*x + e)^4 - 2*(4*c^6*d - 28*c^5*d^2 - 118*c^4*
d^3 - 106*c^3*d^4 + 71*c^2*d^5 + 134*c*d^6 + 43*d^7)*cos(f*x + e)^3 + 2*(2*c^7 - 12*c^6*d - 36*c^5*d^2 - 54*c^
4*d^3 - 39*c^3*d^4 + 39*c^2*d^5 + 73*c*d^6 + 27*d^7)*cos(f*x + e)^2 + 3*(24*c^4*d^2 + 80*c^3*d^3 + 102*c^2*d^4
 + 60*c*d^5 + 14*d^6 + (12*c^2*d^4 + 16*c*d^5 + 7*d^6)*cos(f*x + e)^4 - (24*c^3*d^3 + 44*c^2*d^4 + 30*c*d^5 +
7*d^6)*cos(f*x + e)^3 - (12*c^4*d^2 + 64*c^3*d^3 + 107*c^2*d^4 + 76*c*d^5 + 21*d^6)*cos(f*x + e)^2 + (12*c^4*d
^2 + 40*c^3*d^3 + 51*c^2*d^4 + 30*c*d^5 + 7*d^6)*cos(f*x + e) + (24*c^4*d^2 + 80*c^3*d^3 + 102*c^2*d^4 + 60*c*
d^5 + 14*d^6 - (12*c^2*d^4 + 16*c*d^5 + 7*d^6)*cos(f*x + e)^3 - 2*(12*c^3*d^3 + 28*c^2*d^4 + 23*c*d^5 + 7*d^6)
*cos(f*x + e)^2 + (12*c^4*d^2 + 40*c^3*d^3 + 51*c^2*d^4 + 30*c*d^5 + 7*d^6)*cos(f*x + e))*sin(f*x + e))*sqrt(-
c^2 + d^2)*log(((2*c^2 - d^2)*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d^2 + 2*(c*cos(f*x + e)*sin(f*x + e)
 + d*cos(f*x + e))*sqrt(-c^2 + d^2))/(d^2*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d^2)) + 4*(2*c^7 - 5*c^6
*d - 36*c^5*d^2 - 75*c^4*d^3 - 39*c^3*d^4 + 60*c^2*d^5 + 73*c*d^6 + 20*d^7)*cos(f*x + e) - 2*(2*c^7 - 2*c^6*d
- 6*c^5*d^2 + 6*c^4*d^3 + 6*c^3*d^4 - 6*c^2*d^5 - 2*c*d^6 + 2*d^7 + (2*c^5*d^2 - 16*c^4*d^3 - 61*c^3*d^4 - 16*
c^2*d^5 + 59*c*d^6 + 32*d^7)*cos(f*x + e)^3 - (4*c^6*d - 30*c^5*d^2 - 102*c^4*d^3 - 45*c^3*d^4 + 87*c^2*d^5 +
75*c*d^6 + 11*d^7)*cos(f*x + e)^2 - 2*(c^7 - 4*c^6*d - 33*c^5*d^2 - 78*c^4*d^3 - 42*c^3*d^4 + 63*c^2*d^5 + 74*
c*d^6 + 19*d^7)*cos(f*x + e))*sin(f*x + e))/((a^2*c^8*d^2 - 2*a^2*c^7*d^3 - 2*a^2*c^6*d^4 + 6*a^2*c^5*d^5 - 6*
a^2*c^3*d^7 + 2*a^2*c^2*d^8 + 2*a^2*c*d^9 - a^2*d^10)*f*cos(f*x + e)^4 - (2*a^2*c^9*d - 3*a^2*c^8*d^2 - 6*a^2*
c^7*d^3 + 10*a^2*c^6*d^4 + 6*a^2*c^5*d^5 - 12*a^2*c^4*d^6 - 2*a^2*c^3*d^7 + 6*a^2*c^2*d^8 - a^2*d^10)*f*cos(f*
x + e)^3 - (a^2*c^10 + 2*a^2*c^9*d - 7*a^2*c^8*d^2 - 8*a^2*c^7*d^3 + 18*a^2*c^6*d^4 + 12*a^2*c^5*d^5 - 22*a^2*
c^4*d^6 - 8*a^2*c^3*d^7 + 13*a^2*c^2*d^8 + 2*a^2*c*d^9 - 3*a^2*d^10)*f*cos(f*x + e)^2 + (a^2*c^10 - 5*a^2*c^8*
d^2 + 10*a^2*c^6*d^4 - 10*a^2*c^4*d^6 + 5*a^2*c^2*d^8 - a^2*d^10)*f*cos(f*x + e) + 2*(a^2*c^10 - 5*a^2*c^8*d^2
 + 10*a^2*c^6*d^4 - 10*a^2*c^4*d^6 + 5*a^2*c^2*d^8 - a^2*d^10)*f - ((a^2*c^8*d^2 - 2*a^2*c^7*d^3 - 2*a^2*c^6*d
^4 + 6*a^2*c^5*d^5 - 6*a^2*c^3*d^7 + 2*a^2*c^2*d^8 + 2*a^2*c*d^9 - a^2*d^10)*f*cos(f*x + e)^3 + 2*(a^2*c^9*d -
 a^2*c^8*d^2 - 4*a^2*c^7*d^3 + 4*a^2*c^6*d^4 + 6*a^2*c^5*d^5 - 6*a^2*c^4*d^6 - 4*a^2*c^3*d^7 + 4*a^2*c^2*d^8 +
 a^2*c*d^9 - a^2*d^10)*f*cos(f*x + e)^2 - (a^2*c^10 - 5*a^2*c^8*d^2 + 10*a^2*c^6*d^4 - 10*a^2*c^4*d^6 + 5*a^2*
c^2*d^8 - a^2*d^10)*f*cos(f*x + e) - 2*(a^2*c^10 - 5*a^2*c^8*d^2 + 10*a^2*c^6*d^4 - 10*a^2*c^4*d^6 + 5*a^2*c^2
*d^8 - a^2*d^10)*f)*sin(f*x + e)), -1/6*(2*c^7 - 2*c^6*d - 6*c^5*d^2 + 6*c^4*d^3 + 6*c^3*d^4 - 6*c^2*d^5 - 2*c
*d^6 + 2*d^7 - (2*c^5*d^2 - 16*c^4*d^3 - 61*c^3*d^4 - 16*c^2*d^5 + 59*c*d^6 + 32*d^7)*cos(f*x + e)^4 - (4*c^6*
d - 28*c^5*d^2 - 118*c^4*d^3 - 106*c^3*d^4 + 71*c^2*d^5 + 134*c*d^6 + 43*d^7)*cos(f*x + e)^3 + (2*c^7 - 12*c^6
*d - 36*c^5*d^2 - 54*c^4*d^3 - 39*c^3*d^4 + 39*c^2*d^5 + 73*c*d^6 + 27*d^7)*cos(f*x + e)^2 + 3*(24*c^4*d^2 + 8
0*c^3*d^3 + 102*c^2*d^4 + 60*c*d^5 + 14*d^6 + (12*c^2*d^4 + 16*c*d^5 + 7*d^6)*cos(f*x + e)^4 - (24*c^3*d^3 + 4
4*c^2*d^4 + 30*c*d^5 + 7*d^6)*cos(f*x + e)^3 - (12*c^4*d^2 + 64*c^3*d^3 + 107*c^2*d^4 + 76*c*d^5 + 21*d^6)*cos
(f*x + e)^2 + (12*c^4*d^2 + 40*c^3*d^3 + 51*c^2*d^4 + 30*c*d^5 + 7*d^6)*cos(f*x + e) + (24*c^4*d^2 + 80*c^3*d^
3 + 102*c^2*d^4 + 60*c*d^5 + 14*d^6 - (12*c^2*d^4 + 16*c*d^5 + 7*d^6)*cos(f*x + e)^3 - 2*(12*c^3*d^3 + 28*c^2*
d^4 + 23*c*d^5 + 7*d^6)*cos(f*x + e)^2 + (12*c^4*d^2 + 40*c^3*d^3 + 51*c^2*d^4 + 30*c*d^5 + 7*d^6)*cos(f*x + e
))*sin(f*x + e))*sqrt(c^2 - d^2)*arctan(-(c*sin(f*x + e) + d)/(sqrt(c^2 - d^2)*cos(f*x + e))) + 2*(2*c^7 - 5*c
^6*d - 36*c^5*d^2 - 75*c^4*d^3 - 39*c^3*d^4 + 60*c^2*d^5 + 73*c*d^6 + 20*d^7)*cos(f*x + e) - (2*c^7 - 2*c^6*d
- 6*c^5*d^2 + 6*c^4*d^3 + 6*c^3*d^4 - 6*c^2*d^5 - 2*c*d^6 + 2*d^7 + (2*c^5*d^2 - 16*c^4*d^3 - 61*c^3*d^4 - 16*
c^2*d^5 + 59*c*d^6 + 32*d^7)*cos(f*x + e)^3 - (4*c^6*d - 30*c^5*d^2 - 102*c^4*d^3 - 45*c^3*d^4 + 87*c^2*d^5 +
75*c*d^6 + 11*d^7)*cos(f*x + e)^2 - 2*(c^7 - 4*c^6*d - 33*c^5*d^2 - 78*c^4*d^3 - 42*c^3*d^4 + 63*c^2*d^5 + 74*
c*d^6 + 19*d^7)*cos(f*x + e))*sin(f*x + e))/((a^2*c^8*d^2 - 2*a^2*c^7*d^3 - 2*a^2*c^6*d^4 + 6*a^2*c^5*d^5 - 6*
a^2*c^3*d^7 + 2*a^2*c^2*d^8 + 2*a^2*c*d^9 - a^2*d^10)*f*cos(f*x + e)^4 - (2*a^2*c^9*d - 3*a^2*c^8*d^2 - 6*a^2*
c^7*d^3 + 10*a^2*c^6*d^4 + 6*a^2*c^5*d^5 - 12*a^2*c^4*d^6 - 2*a^2*c^3*d^7 + 6*a^2*c^2*d^8 - a^2*d^10)*f*cos(f*
x + e)^3 - (a^2*c^10 + 2*a^2*c^9*d - 7*a^2*c^8*d^2 - 8*a^2*c^7*d^3 + 18*a^2*c^6*d^4 + 12*a^2*c^5*d^5 - 22*a^2*
c^4*d^6 - 8*a^2*c^3*d^7 + 13*a^2*c^2*d^8 + 2*a^2*c*d^9 - 3*a^2*d^10)*f*cos(f*x + e)^2 + (a^2*c^10 - 5*a^2*c^8*
d^2 + 10*a^2*c^6*d^4 - 10*a^2*c^4*d^6 + 5*a^2*c...

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))**2/(c+d*sin(f*x+e))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 614 vs. \(2 (292) = 584\).
time = 0.57, size = 614, normalized size = 2.09 \begin {gather*} \frac {\frac {3 \, {\left (12 \, c^{2} d^{2} + 16 \, c d^{3} + 7 \, d^{4}\right )} {\left (\pi \left \lfloor \frac {f x + e}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (c\right ) + \arctan \left (\frac {c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + d}{\sqrt {c^{2} - d^{2}}}\right )\right )}}{{\left (a^{2} c^{6} - 2 \, a^{2} c^{5} d - a^{2} c^{4} d^{2} + 4 \, a^{2} c^{3} d^{3} - a^{2} c^{2} d^{4} - 2 \, a^{2} c d^{5} + a^{2} d^{6}\right )} \sqrt {c^{2} - d^{2}}} + \frac {3 \, {\left (9 \, c^{3} d^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 4 \, c^{2} d^{5} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 2 \, c d^{6} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 8 \, c^{4} d^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 \, c^{3} d^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 15 \, c^{2} d^{5} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 8 \, c d^{6} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 2 \, d^{7} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 23 \, c^{3} d^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 12 \, c^{2} d^{5} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 2 \, c d^{6} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 8 \, c^{4} d^{3} + 4 \, c^{3} d^{4} - c^{2} d^{5}\right )}}{{\left (a^{2} c^{8} - 2 \, a^{2} c^{7} d - a^{2} c^{6} d^{2} + 4 \, a^{2} c^{5} d^{3} - a^{2} c^{4} d^{4} - 2 \, a^{2} c^{3} d^{5} + a^{2} c^{2} d^{6}\right )} {\left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + c\right )}^{2}} - \frac {2 \, {\left (3 \, c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 12 \, d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 3 \, c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 21 \, d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 2 \, c - 11 \, d\right )}}{{\left (a^{2} c^{4} - 4 \, a^{2} c^{3} d + 6 \, a^{2} c^{2} d^{2} - 4 \, a^{2} c d^{3} + a^{2} d^{4}\right )} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}}{3 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c+d*sin(f*x+e))^3,x, algorithm="giac")

[Out]

1/3*(3*(12*c^2*d^2 + 16*c*d^3 + 7*d^4)*(pi*floor(1/2*(f*x + e)/pi + 1/2)*sgn(c) + arctan((c*tan(1/2*f*x + 1/2*
e) + d)/sqrt(c^2 - d^2)))/((a^2*c^6 - 2*a^2*c^5*d - a^2*c^4*d^2 + 4*a^2*c^3*d^3 - a^2*c^2*d^4 - 2*a^2*c*d^5 +
a^2*d^6)*sqrt(c^2 - d^2)) + 3*(9*c^3*d^4*tan(1/2*f*x + 1/2*e)^3 + 4*c^2*d^5*tan(1/2*f*x + 1/2*e)^3 - 2*c*d^6*t
an(1/2*f*x + 1/2*e)^3 + 8*c^4*d^3*tan(1/2*f*x + 1/2*e)^2 + 4*c^3*d^4*tan(1/2*f*x + 1/2*e)^2 + 15*c^2*d^5*tan(1
/2*f*x + 1/2*e)^2 + 8*c*d^6*tan(1/2*f*x + 1/2*e)^2 - 2*d^7*tan(1/2*f*x + 1/2*e)^2 + 23*c^3*d^4*tan(1/2*f*x + 1
/2*e) + 12*c^2*d^5*tan(1/2*f*x + 1/2*e) - 2*c*d^6*tan(1/2*f*x + 1/2*e) + 8*c^4*d^3 + 4*c^3*d^4 - c^2*d^5)/((a^
2*c^8 - 2*a^2*c^7*d - a^2*c^6*d^2 + 4*a^2*c^5*d^3 - a^2*c^4*d^4 - 2*a^2*c^3*d^5 + a^2*c^2*d^6)*(c*tan(1/2*f*x
+ 1/2*e)^2 + 2*d*tan(1/2*f*x + 1/2*e) + c)^2) - 2*(3*c*tan(1/2*f*x + 1/2*e)^2 - 12*d*tan(1/2*f*x + 1/2*e)^2 +
3*c*tan(1/2*f*x + 1/2*e) - 21*d*tan(1/2*f*x + 1/2*e) + 2*c - 11*d)/((a^2*c^4 - 4*a^2*c^3*d + 6*a^2*c^2*d^2 - 4
*a^2*c*d^3 + a^2*d^4)*(tan(1/2*f*x + 1/2*e) + 1)^3))/f

________________________________________________________________________________________

Mupad [B]
time = 10.81, size = 1199, normalized size = 4.08 \begin {gather*} \frac {\frac {-4\,c^5+14\,c^4\,d+40\,c^3\,d^2+46\,c^2\,d^3+12\,c\,d^4-3\,d^5}{3\,\left (c+d\right )\,\left (c^2-d^2\right )\,\left (c^3-3\,c^2\,d+3\,c\,d^2-d^3\right )}+\frac {{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^5\,\left (-2\,c^6+4\,c^5\,d+38\,c^4\,d^2+40\,c^3\,d^3+23\,c^2\,d^4+4\,c\,d^5-2\,d^6\right )}{c^2\,\left (c^5-3\,c^4\,d+2\,c^3\,d^2+2\,c^2\,d^3-3\,c\,d^4+d^5\right )}+\frac {2\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3\,\left (-6\,c^6+16\,c^5\,d+102\,c^4\,d^2+212\,c^3\,d^3+177\,c^2\,d^4+33\,c\,d^5-9\,d^6\right )}{3\,c^2\,\left (c^2-d^2\right )\,\left (c^3-3\,c^2\,d+3\,c\,d^2-d^3\right )}+\frac {\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (-6\,c^5+20\,c^4\,d+114\,c^3\,d^2+160\,c^2\,d^3+33\,c\,d^4-6\,d^5\right )}{3\,c\,\left (c^2-d^2\right )\,\left (c^3-3\,c^2\,d+3\,c\,d^2-d^3\right )}+\frac {{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (-14\,c^7+16\,c^6\,d+226\,c^5\,d^2+532\,c^4\,d^3+583\,c^3\,d^4+232\,c^2\,d^5+6\,c\,d^6-6\,d^7\right )}{3\,c^2\,\left (c+d\right )\,\left (c^2-d^2\right )\,\left (c^3-3\,c^2\,d+3\,c\,d^2-d^3\right )}+\frac {{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4\,\left (-16\,c^7+14\,c^6\,d+220\,c^5\,d^2+502\,c^4\,d^3+522\,c^3\,d^4+303\,c^2\,d^5+48\,c\,d^6-18\,d^7\right )}{3\,c^2\,\left (c+d\right )\,\left (c^2-d^2\right )\,\left (c^3-3\,c^2\,d+3\,c\,d^2-d^3\right )}+\frac {{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^6\,\left (-2\,c^6+4\,c^5\,d+14\,c^4\,d^2+8\,c^3\,d^3+9\,c^2\,d^4+4\,c\,d^5-2\,d^6\right )}{c\,\left (c-d\right )\,\left (c^2+2\,c\,d+d^2\right )\,\left (c^3-3\,c^2\,d+3\,c\,d^2-d^3\right )}}{f\,\left (\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (3\,a^2\,c^2+4\,d\,a^2\,c\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (5\,a^2\,c^2+12\,a^2\,c\,d+4\,a^2\,d^2\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^5\,\left (5\,a^2\,c^2+12\,a^2\,c\,d+4\,a^2\,d^2\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3\,\left (7\,a^2\,c^2+16\,a^2\,c\,d+12\,a^2\,d^2\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4\,\left (7\,a^2\,c^2+16\,a^2\,c\,d+12\,a^2\,d^2\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^6\,\left (3\,a^2\,c^2+4\,d\,a^2\,c\right )+a^2\,c^2+a^2\,c^2\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^7\right )}-\frac {d^2\,\mathrm {atan}\left (\frac {\frac {d^2\,\left (12\,c^2+16\,c\,d+7\,d^2\right )\,\left (-2\,a^2\,c^6\,d+4\,a^2\,c^5\,d^2+2\,a^2\,c^4\,d^3-8\,a^2\,c^3\,d^4+2\,a^2\,c^2\,d^5+4\,a^2\,c\,d^6-2\,a^2\,d^7\right )}{2\,a^2\,{\left (c+d\right )}^{5/2}\,{\left (c-d\right )}^{9/2}}+\frac {c\,d^2\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (12\,c^2+16\,c\,d+7\,d^2\right )\,\left (-a^2\,c^6+2\,a^2\,c^5\,d+a^2\,c^4\,d^2-4\,a^2\,c^3\,d^3+a^2\,c^2\,d^4+2\,a^2\,c\,d^5-a^2\,d^6\right )}{a^2\,{\left (c+d\right )}^{5/2}\,{\left (c-d\right )}^{9/2}}}{12\,c^2\,d^2+16\,c\,d^3+7\,d^4}\right )\,\left (12\,c^2+16\,c\,d+7\,d^2\right )}{a^2\,f\,{\left (c+d\right )}^{5/2}\,{\left (c-d\right )}^{9/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + a*sin(e + f*x))^2*(c + d*sin(e + f*x))^3),x)

[Out]

((12*c*d^4 + 14*c^4*d - 4*c^5 - 3*d^5 + 46*c^2*d^3 + 40*c^3*d^2)/(3*(c + d)*(c^2 - d^2)*(3*c*d^2 - 3*c^2*d + c
^3 - d^3)) + (tan(e/2 + (f*x)/2)^5*(4*c*d^5 + 4*c^5*d - 2*c^6 - 2*d^6 + 23*c^2*d^4 + 40*c^3*d^3 + 38*c^4*d^2))
/(c^2*(c^5 - 3*c^4*d - 3*c*d^4 + d^5 + 2*c^2*d^3 + 2*c^3*d^2)) + (2*tan(e/2 + (f*x)/2)^3*(33*c*d^5 + 16*c^5*d
- 6*c^6 - 9*d^6 + 177*c^2*d^4 + 212*c^3*d^3 + 102*c^4*d^2))/(3*c^2*(c^2 - d^2)*(3*c*d^2 - 3*c^2*d + c^3 - d^3)
) + (tan(e/2 + (f*x)/2)*(33*c*d^4 + 20*c^4*d - 6*c^5 - 6*d^5 + 160*c^2*d^3 + 114*c^3*d^2))/(3*c*(c^2 - d^2)*(3
*c*d^2 - 3*c^2*d + c^3 - d^3)) + (tan(e/2 + (f*x)/2)^2*(6*c*d^6 + 16*c^6*d - 14*c^7 - 6*d^7 + 232*c^2*d^5 + 58
3*c^3*d^4 + 532*c^4*d^3 + 226*c^5*d^2))/(3*c^2*(c + d)*(c^2 - d^2)*(3*c*d^2 - 3*c^2*d + c^3 - d^3)) + (tan(e/2
 + (f*x)/2)^4*(48*c*d^6 + 14*c^6*d - 16*c^7 - 18*d^7 + 303*c^2*d^5 + 522*c^3*d^4 + 502*c^4*d^3 + 220*c^5*d^2))
/(3*c^2*(c + d)*(c^2 - d^2)*(3*c*d^2 - 3*c^2*d + c^3 - d^3)) + (tan(e/2 + (f*x)/2)^6*(4*c*d^5 + 4*c^5*d - 2*c^
6 - 2*d^6 + 9*c^2*d^4 + 8*c^3*d^3 + 14*c^4*d^2))/(c*(c - d)*(2*c*d + c^2 + d^2)*(3*c*d^2 - 3*c^2*d + c^3 - d^3
)))/(f*(tan(e/2 + (f*x)/2)*(3*a^2*c^2 + 4*a^2*c*d) + tan(e/2 + (f*x)/2)^2*(5*a^2*c^2 + 4*a^2*d^2 + 12*a^2*c*d)
 + tan(e/2 + (f*x)/2)^5*(5*a^2*c^2 + 4*a^2*d^2 + 12*a^2*c*d) + tan(e/2 + (f*x)/2)^3*(7*a^2*c^2 + 12*a^2*d^2 +
16*a^2*c*d) + tan(e/2 + (f*x)/2)^4*(7*a^2*c^2 + 12*a^2*d^2 + 16*a^2*c*d) + tan(e/2 + (f*x)/2)^6*(3*a^2*c^2 + 4
*a^2*c*d) + a^2*c^2 + a^2*c^2*tan(e/2 + (f*x)/2)^7)) - (d^2*atan(((d^2*(16*c*d + 12*c^2 + 7*d^2)*(4*a^2*c*d^6
- 2*a^2*d^7 - 2*a^2*c^6*d + 2*a^2*c^2*d^5 - 8*a^2*c^3*d^4 + 2*a^2*c^4*d^3 + 4*a^2*c^5*d^2))/(2*a^2*(c + d)^(5/
2)*(c - d)^(9/2)) + (c*d^2*tan(e/2 + (f*x)/2)*(16*c*d + 12*c^2 + 7*d^2)*(2*a^2*c*d^5 - a^2*d^6 - a^2*c^6 + 2*a
^2*c^5*d + a^2*c^2*d^4 - 4*a^2*c^3*d^3 + a^2*c^4*d^2))/(a^2*(c + d)^(5/2)*(c - d)^(9/2)))/(16*c*d^3 + 7*d^4 +
12*c^2*d^2))*(16*c*d + 12*c^2 + 7*d^2))/(a^2*f*(c + d)^(5/2)*(c - d)^(9/2))

________________________________________________________________________________________